/** * @file NCDVal.c * @author Ambroz Bizjak * * @section LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include "NCDVal.h" #include #define TYPE_MASK_EXTERNAL_TYPE ((1 << 3) - 1) #define TYPE_MASK_INTERNAL_TYPE ((1 << 5) - 1) #define TYPE_SHIFT_DEPTH 5 #define STOREDSTRING_TYPE (NCDVAL_STRING | (0 << 3)) #define IDSTRING_TYPE (NCDVAL_STRING | (1 << 3)) #define EXTERNALSTRING_TYPE (NCDVAL_STRING | (2 << 3)) #define COMPOSEDSTRING_TYPE (NCDVAL_STRING | (3 << 3)) static int make_type (int internal_type, int depth) { ASSERT(internal_type == NCDVAL_LIST || internal_type == NCDVAL_MAP || internal_type == STOREDSTRING_TYPE || internal_type == IDSTRING_TYPE || internal_type == EXTERNALSTRING_TYPE || internal_type == COMPOSEDSTRING_TYPE) ASSERT(depth >= 0) ASSERT(depth <= NCDVAL_MAX_DEPTH) return (internal_type | (depth << TYPE_SHIFT_DEPTH)); } static int get_external_type (int type) { return (type & TYPE_MASK_EXTERNAL_TYPE); } static int get_internal_type (int type) { return (type & TYPE_MASK_INTERNAL_TYPE); } static int get_depth (int type) { return (type >> TYPE_SHIFT_DEPTH); } static int bump_depth (int *type_ptr, int elem_depth) { if (get_depth(*type_ptr) < elem_depth + 1) { if (elem_depth + 1 > NCDVAL_MAX_DEPTH) { return 0; } *type_ptr = make_type(get_internal_type(*type_ptr), elem_depth + 1); } return 1; } static void * NCDValMem__BufAt (NCDValMem *o, NCDVal__idx idx) { ASSERT(idx >= 0) ASSERT(idx < o->used) return (o->buf ? o->buf : o->fastbuf) + idx; } static NCDVal__idx NCDValMem__Alloc (NCDValMem *o, NCDVal__idx alloc_size, NCDVal__idx align) { NCDVal__idx mod = o->used % align; NCDVal__idx align_extra = mod ? (align - mod) : 0; if (alloc_size > NCDVAL_MAXIDX - align_extra) { return -1; } NCDVal__idx aligned_alloc_size = align_extra + alloc_size; if (aligned_alloc_size > o->size - o->used) { NCDVal__idx newsize = (o->buf ? o->size : NCDVAL_FIRST_SIZE); while (aligned_alloc_size > newsize - o->used) { if (newsize > NCDVAL_MAXIDX / 2) { return -1; } newsize *= 2; } char *newbuf; if (!o->buf) { newbuf = malloc(newsize); if (!newbuf) { return -1; } memcpy(newbuf, o->fastbuf, o->used); } else { newbuf = realloc(o->buf, newsize); if (!newbuf) { return -1; } } o->buf = newbuf; o->size = newsize; } NCDVal__idx idx = o->used + align_extra; o->used += aligned_alloc_size; return idx; } static NCDValRef NCDVal__Ref (NCDValMem *mem, NCDVal__idx idx) { ASSERT(idx == -1 || mem) NCDValRef ref = {mem, idx}; return ref; } static void NCDVal__AssertMem (NCDValMem *mem) { ASSERT(mem) ASSERT(mem->size >= 0) ASSERT(mem->used >= 0) ASSERT(mem->used <= mem->size) ASSERT(mem->buf || mem->size == NCDVAL_FASTBUF_SIZE) ASSERT(!mem->buf || mem->size >= NCDVAL_FIRST_SIZE) } static void NCDVal_AssertExternal (NCDValMem *mem, const void *e_buf, size_t e_len) { #ifndef NDEBUG const char *e_cbuf = e_buf; char *buf = (mem->buf ? mem->buf : mem->fastbuf); ASSERT(e_cbuf >= buf + mem->size || e_cbuf + e_len <= buf) #endif } static void NCDVal__AssertValOnly (NCDValMem *mem, NCDVal__idx idx) { // placeholders if (idx < -1) { return; } ASSERT(idx >= 0) ASSERT(idx + sizeof(int) <= mem->used) #ifndef NDEBUG int *type_ptr = NCDValMem__BufAt(mem, idx); ASSERT(get_depth(*type_ptr) >= 0) ASSERT(get_depth(*type_ptr) <= NCDVAL_MAX_DEPTH) switch (get_internal_type(*type_ptr)) { case STOREDSTRING_TYPE: { ASSERT(idx + sizeof(struct NCDVal__string) <= mem->used) struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx); ASSERT(str_e->length >= 0) ASSERT(idx + sizeof(struct NCDVal__string) + str_e->length + 1 <= mem->used) } break; case NCDVAL_LIST: { ASSERT(idx + sizeof(struct NCDVal__list) <= mem->used) struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx); ASSERT(list_e->maxcount >= 0) ASSERT(list_e->count >= 0) ASSERT(list_e->count <= list_e->maxcount) ASSERT(idx + sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx) <= mem->used) } break; case NCDVAL_MAP: { ASSERT(idx + sizeof(struct NCDVal__map) <= mem->used) struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx); ASSERT(map_e->maxcount >= 0) ASSERT(map_e->count >= 0) ASSERT(map_e->count <= map_e->maxcount) ASSERT(idx + sizeof(struct NCDVal__map) + map_e->maxcount * sizeof(struct NCDVal__mapelem) <= mem->used) } break; case IDSTRING_TYPE: { ASSERT(idx + sizeof(struct NCDVal__idstring) <= mem->used) struct NCDVal__idstring *ids_e = NCDValMem__BufAt(mem, idx); ASSERT(ids_e->string_id >= 0) ASSERT(ids_e->string_index) } break; case EXTERNALSTRING_TYPE: { ASSERT(idx + sizeof(struct NCDVal__externalstring) <= mem->used) struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(mem, idx); ASSERT(exs_e->data) ASSERT(!exs_e->ref.target || exs_e->ref.next >= -1) ASSERT(!exs_e->ref.target || exs_e->ref.next < mem->used) } break; case COMPOSEDSTRING_TYPE: { ASSERT(idx + sizeof(struct NCDVal__composedstring) <= mem->used) struct NCDVal__composedstring *cms_e = NCDValMem__BufAt(mem, idx); ASSERT(cms_e->func_getptr) ASSERT(!cms_e->ref.target || cms_e->ref.next >= -1) ASSERT(!cms_e->ref.target || cms_e->ref.next < mem->used) } break; default: ASSERT(0); } #endif } static void NCDVal__AssertVal (NCDValRef val) { NCDVal__AssertMem(val.mem); NCDVal__AssertValOnly(val.mem, val.idx); } static NCDValMapElem NCDVal__MapElem (NCDVal__idx elemidx) { ASSERT(elemidx >= 0 || elemidx == -1) NCDValMapElem me = {elemidx}; return me; } static void NCDVal__MapAssertElemOnly (NCDValRef map, NCDVal__idx elemidx) { #ifndef NDEBUG struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx); ASSERT(elemidx >= map.idx + offsetof(struct NCDVal__map, elems)) ASSERT(elemidx < map.idx + offsetof(struct NCDVal__map, elems) + map_e->count * sizeof(struct NCDVal__mapelem)) struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx); NCDVal__AssertValOnly(map.mem, me_e->key_idx); NCDVal__AssertValOnly(map.mem, me_e->val_idx); #endif } static void NCDVal__MapAssertElem (NCDValRef map, NCDValMapElem me) { ASSERT(NCDVal_IsMap(map)) NCDVal__MapAssertElemOnly(map, me.elemidx); } static NCDVal__idx NCDVal__MapElemIdx (NCDVal__idx mapidx, NCDVal__idx pos) { return mapidx + offsetof(struct NCDVal__map, elems) + pos * sizeof(struct NCDVal__mapelem); } static int NCDVal__Depth (NCDValRef val) { ASSERT(val.idx != -1) // handle placeholders if (val.idx < 0) { return 0; } int *elem_type_ptr = NCDValMem__BufAt(val.mem, val.idx); int depth = get_depth(*elem_type_ptr); ASSERT(depth >= 0) ASSERT(depth <= NCDVAL_MAX_DEPTH) return depth; } static int NCDValMem__NeedRegisterLink (NCDValMem *mem, NCDVal__idx val_idx) { NCDVal__AssertValOnly(mem, val_idx); return !(val_idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(mem, val_idx)) == COMPOSEDSTRING_TYPE; } static int NCDValMem__RegisterLink (NCDValMem *mem, NCDVal__idx val_idx, NCDVal__idx link_idx) { NCDVal__AssertValOnly(mem, val_idx); ASSERT(NCDValMem__NeedRegisterLink(mem, val_idx)) NCDVal__idx cms_link_idx = NCDValMem__Alloc(mem, sizeof(struct NCDVal__cms_link), __alignof(struct NCDVal__cms_link)); if (cms_link_idx < 0) { return 0; } struct NCDVal__cms_link *cms_link = NCDValMem__BufAt(mem, cms_link_idx); cms_link->link_idx = link_idx; cms_link->next_cms_link = mem->first_cms_link; mem->first_cms_link = cms_link_idx; return 1; } static void NCDValMem__PopLastRegisteredLink (NCDValMem *mem) { ASSERT(mem->first_cms_link != -1) struct NCDVal__cms_link *cms_link = NCDValMem__BufAt(mem, mem->first_cms_link); mem->first_cms_link = cms_link->next_cms_link; } static NCDValRef NCDVal__CopyComposedStringToStored (NCDValRef val) { ASSERT(NCDVal_IsComposedString(val)) struct NCDVal__composedstring cms_e = *(struct NCDVal__composedstring *)NCDValMem__BufAt(val.mem, val.idx); NCDValRef copy = NCDVal_NewStringUninitialized(val.mem, cms_e.length); if (NCDVal_IsInvalid(copy)) { return NCDVal_NewInvalid(); } char *copy_data = (char *)NCDVal_StringData(copy); size_t pos = 0; while (pos < cms_e.length) { const char *chunk_data; size_t chunk_len; cms_e.func_getptr(cms_e.user, cms_e.offset + pos, &chunk_data, &chunk_len); ASSERT(chunk_data) ASSERT(chunk_len > 0) if (chunk_len > cms_e.length - pos) { chunk_len = cms_e.length - pos; } memcpy(copy_data + pos, chunk_data, chunk_len); pos += chunk_len; } return copy; } static const char * NCDVal__composedstring_cstring_func (const b_cstring *cstr, size_t offset, size_t *out_length) { ASSERT(offset < cstr->length) ASSERT(out_length) ASSERT(cstr->func == NCDVal__composedstring_cstring_func) size_t str_offset = cstr->user1.size; NCDVal_ComposedString_func_getptr func_getptr = (NCDVal_ComposedString_func_getptr)cstr->user2.fptr; void *user = cstr->user3.ptr; const char *data; func_getptr(user, str_offset + offset, &data, out_length); ASSERT(data) ASSERT(*out_length > 0) return data; } #include "NCDVal_maptree.h" #include void NCDValMem_Init (NCDValMem *o) { o->buf = NULL; o->size = NCDVAL_FASTBUF_SIZE; o->used = 0; o->first_ref = -1; o->first_cms_link = -1; } void NCDValMem_Free (NCDValMem *o) { NCDVal__AssertMem(o); NCDVal__idx refidx = o->first_ref; while (refidx != -1) { struct NCDVal__ref *ref = NCDValMem__BufAt(o, refidx); ASSERT(ref->target) BRefTarget_Deref(ref->target); refidx = ref->next; } if (o->buf) { BFree(o->buf); } } int NCDValMem_InitCopy (NCDValMem *o, NCDValMem *other) { NCDVal__AssertMem(other); o->size = other->size; o->used = other->used; o->first_ref = other->first_ref; o->first_cms_link = other->first_cms_link; if (!other->buf) { o->buf = NULL; memcpy(o->fastbuf, other->fastbuf, other->used); } else { o->buf = BAlloc(other->size); if (!o->buf) { goto fail0; } memcpy(o->buf, other->buf, other->used); } NCDVal__idx refidx = o->first_ref; while (refidx != -1) { struct NCDVal__ref *ref = NCDValMem__BufAt(o, refidx); ASSERT(ref->target) if (!BRefTarget_Ref(ref->target)) { goto fail1; } refidx = ref->next; } return 1; fail1:; NCDVal__idx undo_refidx = o->first_ref; while (undo_refidx != refidx) { struct NCDVal__ref *ref = NCDValMem__BufAt(o, undo_refidx); BRefTarget_Deref(ref->target); undo_refidx = ref->next; } if (o->buf) { BFree(o->buf); } fail0: return 0; } int NCDValMem_ConvertNonContinuousStrings (NCDValMem *o, NCDValRef *root_val) { NCDVal__AssertMem(o); ASSERT(root_val) ASSERT(root_val->mem == o) NCDVal__AssertValOnly(o, root_val->idx); while (o->first_cms_link != -1) { struct NCDVal__cms_link cms_link = *(struct NCDVal__cms_link *)NCDValMem__BufAt(o, o->first_cms_link); NCDVal__idx val_idx = *(NCDVal__idx *)NCDValMem__BufAt(o, cms_link.link_idx); NCDValRef val = NCDVal__Ref(o, val_idx); ASSERT(NCDVal_IsComposedString(val)) NCDValRef copy = NCDVal__CopyComposedStringToStored(val); if (NCDVal_IsInvalid(copy)) { return 0; } *(int *)NCDValMem__BufAt(o, cms_link.link_idx) = copy.idx; o->first_cms_link = cms_link.next_cms_link; } if (NCDVal_IsComposedString(*root_val)) { NCDValRef copy = NCDVal__CopyComposedStringToStored(*root_val); if (NCDVal_IsInvalid(copy)) { return 0; } *root_val = copy; } return 1; } void NCDVal_Assert (NCDValRef val) { ASSERT(val.idx == -1 || (NCDVal__AssertVal(val), 1)) } int NCDVal_IsInvalid (NCDValRef val) { NCDVal_Assert(val); return (val.idx == -1); } int NCDVal_IsPlaceholder (NCDValRef val) { NCDVal_Assert(val); return (val.idx < -1); } int NCDVal_Type (NCDValRef val) { NCDVal__AssertVal(val); if (val.idx < -1) { return NCDVAL_PLACEHOLDER; } int *type_ptr = NCDValMem__BufAt(val.mem, val.idx); return get_external_type(*type_ptr); } NCDValRef NCDVal_NewInvalid (void) { NCDValRef ref = {NULL, -1}; return ref; } NCDValRef NCDVal_NewPlaceholder (NCDValMem *mem, int plid) { NCDVal__AssertMem(mem); ASSERT(plid >= 0) ASSERT(NCDVAL_MINIDX + plid < -1) NCDValRef ref = {mem, NCDVAL_MINIDX + plid}; return ref; } int NCDVal_PlaceholderId (NCDValRef val) { ASSERT(NCDVal_IsPlaceholder(val)) return (val.idx - NCDVAL_MINIDX); } NCDValRef NCDVal_NewCopy (NCDValMem *mem, NCDValRef val) { NCDVal__AssertMem(mem); NCDVal__AssertVal(val); if (val.idx < -1) { return NCDVal_NewPlaceholder(mem, NCDVal_PlaceholderId(val)); } void *ptr = NCDValMem__BufAt(val.mem, val.idx); switch (get_internal_type(*(int *)ptr)) { case STOREDSTRING_TYPE: { struct NCDVal__string *str_e = ptr; NCDVal__idx size = sizeof(struct NCDVal__string) + str_e->length + 1; NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string)); if (idx < 0) { goto fail; } str_e = NCDValMem__BufAt(val.mem, val.idx); struct NCDVal__string *new_str_e = NCDValMem__BufAt(mem, idx); memcpy(new_str_e, str_e, size); return NCDVal__Ref(mem, idx); } break; case NCDVAL_LIST: { struct NCDVal__list *list_e = ptr; NCDVal__idx size = sizeof(struct NCDVal__list) + list_e->maxcount * sizeof(NCDVal__idx); NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__list)); if (idx < 0) { goto fail; } list_e = NCDValMem__BufAt(val.mem, val.idx); struct NCDVal__list *new_list_e = NCDValMem__BufAt(mem, idx); *new_list_e = *list_e; NCDVal__idx count = list_e->count; for (NCDVal__idx i = 0; i < count; i++) { NCDValRef elem_copy = NCDVal_NewCopy(mem, NCDVal__Ref(val.mem, list_e->elem_indices[i])); if (NCDVal_IsInvalid(elem_copy)) { goto fail; } if (NCDValMem__NeedRegisterLink(mem, elem_copy.idx)) { if (!NCDValMem__RegisterLink(mem, elem_copy.idx, idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx))) { goto fail; } } list_e = NCDValMem__BufAt(val.mem, val.idx); new_list_e = NCDValMem__BufAt(mem, idx); new_list_e->elem_indices[i] = elem_copy.idx; } return NCDVal__Ref(mem, idx); } break; case NCDVAL_MAP: { size_t count = NCDVal_MapCount(val); NCDValRef copy = NCDVal_NewMap(mem, count); if (NCDVal_IsInvalid(copy)) { goto fail; } for (NCDValMapElem e = NCDVal_MapFirst(val); !NCDVal_MapElemInvalid(e); e = NCDVal_MapNext(val, e)) { NCDValRef key_copy = NCDVal_NewCopy(mem, NCDVal_MapElemKey(val, e)); NCDValRef val_copy = NCDVal_NewCopy(mem, NCDVal_MapElemVal(val, e)); if (NCDVal_IsInvalid(key_copy) || NCDVal_IsInvalid(val_copy)) { goto fail; } int inserted; if (!NCDVal_MapInsert(copy, key_copy, val_copy, &inserted)) { goto fail; } ASSERT_EXECUTE(inserted) } return copy; } break; case IDSTRING_TYPE: { NCDVal__idx size = sizeof(struct NCDVal__idstring); NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__idstring)); if (idx < 0) { goto fail; } struct NCDVal__idstring *ids_e = NCDValMem__BufAt(val.mem, val.idx); struct NCDVal__idstring *new_ids_e = NCDValMem__BufAt(mem, idx); *new_ids_e = *ids_e; return NCDVal__Ref(mem, idx); } break; case EXTERNALSTRING_TYPE: { struct NCDVal__externalstring *exs_e = ptr; return NCDVal_NewExternalString(mem, exs_e->data, exs_e->length, exs_e->ref.target); } break; case COMPOSEDSTRING_TYPE: { struct NCDVal__composedstring *cms_e = ptr; NCDValComposedStringResource resource; resource.func_getptr = cms_e->func_getptr; resource.user = cms_e->user; resource.ref_target = cms_e->ref.target; return NCDVal_NewComposedString(mem, resource, cms_e->offset, cms_e->length); } break; default: ASSERT(0); } ASSERT(0); fail: return NCDVal_NewInvalid(); } int NCDVal_Compare (NCDValRef val1, NCDValRef val2) { NCDVal__AssertVal(val1); NCDVal__AssertVal(val2); int type1 = NCDVal_Type(val1); int type2 = NCDVal_Type(val2); if (type1 != type2) { return (type1 > type2) - (type1 < type2); } switch (type1) { case NCDVAL_STRING: { size_t len1 = NCDVal_StringLength(val1); size_t len2 = NCDVal_StringLength(val2); size_t min_len = len1 < len2 ? len1 : len2; int cmp = NCDVal_StringMemCmp(val1, val2, 0, 0, min_len); if (cmp) { return (cmp > 0) - (cmp < 0); } return (len1 > len2) - (len1 < len2); } break; case NCDVAL_LIST: { size_t count1 = NCDVal_ListCount(val1); size_t count2 = NCDVal_ListCount(val2); size_t min_count = count1 < count2 ? count1 : count2; for (size_t i = 0; i < min_count; i++) { NCDValRef ev1 = NCDVal_ListGet(val1, i); NCDValRef ev2 = NCDVal_ListGet(val2, i); int cmp = NCDVal_Compare(ev1, ev2); if (cmp) { return cmp; } } return (count1 > count2) - (count1 < count2); } break; case NCDVAL_MAP: { NCDValMapElem e1 = NCDVal_MapOrderedFirst(val1); NCDValMapElem e2 = NCDVal_MapOrderedFirst(val2); while (1) { int inv1 = NCDVal_MapElemInvalid(e1); int inv2 = NCDVal_MapElemInvalid(e2); if (inv1 || inv2) { return inv2 - inv1; } NCDValRef key1 = NCDVal_MapElemKey(val1, e1); NCDValRef key2 = NCDVal_MapElemKey(val2, e2); int cmp = NCDVal_Compare(key1, key2); if (cmp) { return cmp; } NCDValRef value1 = NCDVal_MapElemVal(val1, e1); NCDValRef value2 = NCDVal_MapElemVal(val2, e2); cmp = NCDVal_Compare(value1, value2); if (cmp) { return cmp; } e1 = NCDVal_MapOrderedNext(val1, e1); e2 = NCDVal_MapOrderedNext(val2, e2); } } break; case NCDVAL_PLACEHOLDER: { int plid1 = NCDVal_PlaceholderId(val1); int plid2 = NCDVal_PlaceholderId(val2); return (plid1 > plid2) - (plid1 < plid2); } break; default: ASSERT(0); return 0; } } NCDValSafeRef NCDVal_ToSafe (NCDValRef val) { NCDVal_Assert(val); NCDValSafeRef sval = {val.idx}; return sval; } NCDValRef NCDVal_FromSafe (NCDValMem *mem, NCDValSafeRef sval) { NCDVal__AssertMem(mem); ASSERT(sval.idx == -1 || (NCDVal__AssertValOnly(mem, sval.idx), 1)) NCDValRef val = {mem, sval.idx}; return val; } NCDValRef NCDVal_Moved (NCDValMem *mem, NCDValRef val) { NCDVal__AssertMem(mem); ASSERT(val.idx == -1 || (NCDVal__AssertValOnly(mem, val.idx), 1)) NCDValRef val2 = {mem, val.idx}; return val2; } int NCDVal_HasOnlyContinuousStrings (NCDValRef val) { NCDVal__AssertVal(val); switch (NCDVal_Type(val)) { case NCDVAL_STRING: { if (!NCDVal_IsContinuousString(val)) { return 0; } } break; case NCDVAL_LIST: { size_t count = NCDVal_ListCount(val); for (size_t i = 0; i < count; i++) { NCDValRef elem = NCDVal_ListGet(val, i); if (!NCDVal_HasOnlyContinuousStrings(elem)) { return 0; } } } break; case NCDVAL_MAP: { for (NCDValMapElem me = NCDVal_MapFirst(val); !NCDVal_MapElemInvalid(me); me = NCDVal_MapNext(val, me)) { NCDValRef e_key = NCDVal_MapElemKey(val, me); NCDValRef e_val = NCDVal_MapElemVal(val, me); if (!NCDVal_HasOnlyContinuousStrings(e_key) || !NCDVal_HasOnlyContinuousStrings(e_val)) { return 0; } } } break; case NCDVAL_PLACEHOLDER: { } break; default: ASSERT(0); } return 1; } int NCDVal_IsString (NCDValRef val) { NCDVal__AssertVal(val); return NCDVal_Type(val) == NCDVAL_STRING; } int NCDVal_IsContinuousString (NCDValRef val) { NCDVal__AssertVal(val); if (val.idx < -1) { return 0; } switch (get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx))) { case STOREDSTRING_TYPE: case IDSTRING_TYPE: case EXTERNALSTRING_TYPE: return 1; default: return 0; } } int NCDVal_IsStoredString (NCDValRef val) { NCDVal__AssertVal(val); return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == STOREDSTRING_TYPE; } int NCDVal_IsIdString (NCDValRef val) { NCDVal__AssertVal(val); return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == IDSTRING_TYPE; } int NCDVal_IsExternalString (NCDValRef val) { NCDVal__AssertVal(val); return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == EXTERNALSTRING_TYPE; } int NCDVal_IsComposedString (NCDValRef val) { NCDVal__AssertVal(val); return !(val.idx < -1) && get_internal_type(*(int *)NCDValMem__BufAt(val.mem, val.idx)) == COMPOSEDSTRING_TYPE; } int NCDVal_IsStringNoNulls (NCDValRef val) { NCDVal__AssertVal(val); return NCDVal_Type(val) == NCDVAL_STRING && !NCDVal_StringHasNulls(val); } NCDValRef NCDVal_NewString (NCDValMem *mem, const char *data) { NCDVal__AssertMem(mem); ASSERT(data) NCDVal_AssertExternal(mem, data, strlen(data)); return NCDVal_NewStringBin(mem, (const uint8_t *)data, strlen(data)); } NCDValRef NCDVal_NewStringBin (NCDValMem *mem, const uint8_t *data, size_t len) { NCDVal__AssertMem(mem); ASSERT(len == 0 || data) NCDVal_AssertExternal(mem, data, len); if (len > NCDVAL_MAXIDX - sizeof(struct NCDVal__string) - 1) { goto fail; } NCDVal__idx size = sizeof(struct NCDVal__string) + len + 1; NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string)); if (idx < 0) { goto fail; } struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx); str_e->type = make_type(STOREDSTRING_TYPE, 0); str_e->length = len; if (len > 0) { memcpy(str_e->data, data, len); } str_e->data[len] = '\0'; return NCDVal__Ref(mem, idx); fail: return NCDVal_NewInvalid(); } NCDValRef NCDVal_NewStringUninitialized (NCDValMem *mem, size_t len) { NCDVal__AssertMem(mem); if (len > NCDVAL_MAXIDX - sizeof(struct NCDVal__string) - 1) { goto fail; } NCDVal__idx size = sizeof(struct NCDVal__string) + len + 1; NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__string)); if (idx < 0) { goto fail; } struct NCDVal__string *str_e = NCDValMem__BufAt(mem, idx); str_e->type = make_type(STOREDSTRING_TYPE, 0); str_e->length = len; str_e->data[len] = '\0'; return NCDVal__Ref(mem, idx); fail: return NCDVal_NewInvalid(); } NCDValRef NCDVal_NewIdString (NCDValMem *mem, NCD_string_id_t string_id, NCDStringIndex *string_index) { NCDVal__AssertMem(mem); ASSERT(string_id >= 0) ASSERT(string_index) NCDVal__idx size = sizeof(struct NCDVal__idstring); NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__idstring)); if (idx < 0) { goto fail; } struct NCDVal__idstring *ids_e = NCDValMem__BufAt(mem, idx); ids_e->type = make_type(IDSTRING_TYPE, 0); ids_e->string_id = string_id; ids_e->string_index = string_index; return NCDVal__Ref(mem, idx); fail: return NCDVal_NewInvalid(); } NCDValRef NCDVal_NewExternalString (NCDValMem *mem, const char *data, size_t len, BRefTarget *ref_target) { NCDVal__AssertMem(mem); ASSERT(data) NCDVal_AssertExternal(mem, data, len); NCDVal__idx size = sizeof(struct NCDVal__externalstring); NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__externalstring)); if (idx < 0) { goto fail; } if (ref_target) { if (!BRefTarget_Ref(ref_target)) { goto fail; } } struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(mem, idx); exs_e->type = make_type(EXTERNALSTRING_TYPE, 0); exs_e->data = data; exs_e->length = len; exs_e->ref.target = ref_target; if (ref_target) { exs_e->ref.next = mem->first_ref; mem->first_ref = idx + offsetof(struct NCDVal__externalstring, ref); } return NCDVal__Ref(mem, idx); fail: return NCDVal_NewInvalid(); } NCDValRef NCDVal_NewComposedString (NCDValMem *mem, NCDValComposedStringResource resource, size_t offset, size_t length) { NCDVal__AssertMem(mem); ASSERT(resource.func_getptr) NCDVal__idx size = sizeof(struct NCDVal__composedstring); NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__composedstring)); if (idx < 0) { goto fail; } if (resource.ref_target) { if (!BRefTarget_Ref(resource.ref_target)) { goto fail; } } struct NCDVal__composedstring *cms_e = NCDValMem__BufAt(mem, idx); cms_e->type = make_type(COMPOSEDSTRING_TYPE, 0); cms_e->offset = offset; cms_e->length = length; cms_e->func_getptr = resource.func_getptr; cms_e->user = resource.user; cms_e->ref.target = resource.ref_target; if (resource.ref_target) { cms_e->ref.next = mem->first_ref; mem->first_ref = idx + offsetof(struct NCDVal__composedstring, ref); } return NCDVal__Ref(mem, idx); fail: return NCDVal_NewInvalid(); } const char * NCDVal_StringData (NCDValRef contstring) { ASSERT(NCDVal_IsContinuousString(contstring)) void *ptr = NCDValMem__BufAt(contstring.mem, contstring.idx); switch (get_internal_type(*(int *)ptr)) { case STOREDSTRING_TYPE: { struct NCDVal__string *str_e = ptr; return str_e->data; } break; case IDSTRING_TYPE: { struct NCDVal__idstring *ids_e = ptr; const char *value = NCDStringIndex_Value(ids_e->string_index, ids_e->string_id); return value; } break; case EXTERNALSTRING_TYPE: { struct NCDVal__externalstring *exs_e = ptr; return exs_e->data; } break; default: ASSERT(0); return NULL; } } size_t NCDVal_StringLength (NCDValRef string) { ASSERT(NCDVal_IsString(string)) void *ptr = NCDValMem__BufAt(string.mem, string.idx); switch (get_internal_type(*(int *)ptr)) { case STOREDSTRING_TYPE: { struct NCDVal__string *str_e = ptr; return str_e->length; } break; case IDSTRING_TYPE: { struct NCDVal__idstring *ids_e = ptr; return NCDStringIndex_Length(ids_e->string_index, ids_e->string_id); } break; case EXTERNALSTRING_TYPE: { struct NCDVal__externalstring *exs_e = ptr; return exs_e->length; } break; case COMPOSEDSTRING_TYPE: { struct NCDVal__composedstring *cms_e = ptr; return cms_e->length; } break; default: ASSERT(0); return 0; } } b_cstring NCDValComposedStringResource_Cstring (NCDValComposedStringResource resource, size_t offset, size_t length) { b_cstring cstr; cstr.length = length; cstr.func = NCDVal__composedstring_cstring_func; cstr.user1.size = offset; cstr.user2.fptr = (void (*) (void))resource.func_getptr; cstr.user3.ptr = resource.user; return cstr; } b_cstring NCDVal_StringCstring (NCDValRef string) { ASSERT(NCDVal_IsString(string)) void *ptr = NCDValMem__BufAt(string.mem, string.idx); switch (get_internal_type(*(int *)ptr)) { case STOREDSTRING_TYPE: { struct NCDVal__string *str_e = ptr; return b_cstring_make_buf(str_e->data, str_e->length); } break; case IDSTRING_TYPE: { struct NCDVal__idstring *ids_e = ptr; return b_cstring_make_buf(NCDStringIndex_Value(ids_e->string_index, ids_e->string_id), NCDStringIndex_Length(ids_e->string_index, ids_e->string_id)); } break; case EXTERNALSTRING_TYPE: { struct NCDVal__externalstring *exs_e = ptr; return b_cstring_make_buf(exs_e->data, exs_e->length); } break; case COMPOSEDSTRING_TYPE: { struct NCDVal__composedstring *cms_e = ptr; b_cstring cstr; cstr.length = cms_e->length; cstr.func = NCDVal__composedstring_cstring_func; cstr.user1.size = cms_e->offset; cstr.user2.fptr = (void (*) (void))cms_e->func_getptr; cstr.user3.ptr = cms_e->user; return cstr; } break; default: { ASSERT(0); return b_cstring_make_empty(); } break; } } int NCDVal_StringNullTerminate (NCDValRef string, NCDValNullTermString *out) { ASSERT(NCDVal_IsString(string)) ASSERT(out) void *ptr = NCDValMem__BufAt(string.mem, string.idx); switch (get_internal_type(*(int *)ptr)) { case STOREDSTRING_TYPE: { struct NCDVal__string *str_e = ptr; out->data = str_e->data; out->is_allocated = 0; return 1; } break; case IDSTRING_TYPE: { struct NCDVal__idstring *ids_e = ptr; out->data = (char *)NCDStringIndex_Value(ids_e->string_index, ids_e->string_id); out->is_allocated = 0; return 1; } break; case EXTERNALSTRING_TYPE: { struct NCDVal__externalstring *exs_e = ptr; char *copy = b_strdup_bin(exs_e->data, exs_e->length); if (!copy) { return 0; } out->data = copy; out->is_allocated = 1; return 1; } break; case COMPOSEDSTRING_TYPE: { struct NCDVal__composedstring *cms_e = ptr; size_t length = cms_e->length; if (length == SIZE_MAX) { return 0; } char *copy = BAlloc(length + 1); if (!copy) { return 0; } NCDVal_StringCopyOut(string, 0, length, copy); copy[length] = '\0'; out->data = copy; out->is_allocated = 1; return 1; } break; default: ASSERT(0); return 0; } } NCDValNullTermString NCDValNullTermString_NewDummy (void) { NCDValNullTermString nts; nts.data = NULL; nts.is_allocated = 0; return nts; } void NCDValNullTermString_Free (NCDValNullTermString *o) { if (o->is_allocated) { BFree(o->data); } } int NCDVal_StringContinuize (NCDValRef string, NCDValContString *out) { ASSERT(NCDVal_IsString(string)) ASSERT(out) if (NCDVal_IsContinuousString(string)) { out->data = (char *)NCDVal_StringData(string); out->is_allocated = 0; return 1; } size_t length = NCDVal_StringLength(string); char *data = BAlloc(length); if (!data) { return 0; } NCDVal_StringCopyOut(string, 0, length, data); out->data = data; out->is_allocated = 1; return 1; } NCDValContString NCDValContString_NewDummy (void) { NCDValContString cts; cts.data = NULL; cts.is_allocated = 0; return cts; } void NCDValContString_Free (NCDValContString *o) { if (o->is_allocated) { BFree(o->data); } } void NCDVal_IdStringGet (NCDValRef idstring, NCD_string_id_t *out_string_id, NCDStringIndex **out_string_index) { ASSERT(NCDVal_IsIdString(idstring)) ASSERT(out_string_id) ASSERT(out_string_index) struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx); *out_string_id = ids_e->string_id; *out_string_index = ids_e->string_index; } NCD_string_id_t NCDVal_IdStringId (NCDValRef idstring) { ASSERT(NCDVal_IsIdString(idstring)) struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx); return ids_e->string_id; } NCDStringIndex * NCDVal_IdStringStringIndex (NCDValRef idstring) { ASSERT(NCDVal_IsIdString(idstring)) struct NCDVal__idstring *ids_e = NCDValMem__BufAt(idstring.mem, idstring.idx); return ids_e->string_index; } BRefTarget * NCDVal_ExternalStringTarget (NCDValRef externalstring) { ASSERT(NCDVal_IsExternalString(externalstring)) struct NCDVal__externalstring *exs_e = NCDValMem__BufAt(externalstring.mem, externalstring.idx); return exs_e->ref.target; } NCDValComposedStringResource NCDVal_ComposedStringResource (NCDValRef composedstring) { ASSERT(NCDVal_IsComposedString(composedstring)) struct NCDVal__composedstring *cms_e = NCDValMem__BufAt(composedstring.mem, composedstring.idx); NCDValComposedStringResource res; res.func_getptr = cms_e->func_getptr; res.user = cms_e->user; res.ref_target = cms_e->ref.target; return res; } size_t NCDVal_ComposedStringOffset (NCDValRef composedstring) { ASSERT(NCDVal_IsComposedString(composedstring)) struct NCDVal__composedstring *cms_e = NCDValMem__BufAt(composedstring.mem, composedstring.idx); return cms_e->offset; } int NCDVal_StringHasNulls (NCDValRef string) { ASSERT(NCDVal_IsString(string)) void *ptr = NCDValMem__BufAt(string.mem, string.idx); switch (get_internal_type(*(int *)ptr)) { case IDSTRING_TYPE: { struct NCDVal__idstring *ids_e = ptr; return NCDStringIndex_HasNulls(ids_e->string_index, ids_e->string_id); } break; case STOREDSTRING_TYPE: case EXTERNALSTRING_TYPE: { const char *data = NCDVal_StringData(string); size_t length = NCDVal_StringLength(string); return !!memchr(data, '\0', length); } break; case COMPOSEDSTRING_TYPE: { b_cstring cstr = NCDVal_StringCstring(string); return b_cstring_memchr(cstr, 0, cstr.length, '\0', NULL); } break; default: ASSERT(0); return 0; } } int NCDVal_StringEquals (NCDValRef string, const char *data) { ASSERT(NCDVal_IsString(string)) ASSERT(data) size_t data_len = strlen(data); return NCDVal_StringLength(string) == data_len && NCDVal_StringRegionEquals(string, 0, data_len, data); } int NCDVal_StringEqualsId (NCDValRef string, NCD_string_id_t string_id, NCDStringIndex *string_index) { ASSERT(NCDVal_IsString(string)) ASSERT(string_id >= 0) ASSERT(string_index) void *ptr = NCDValMem__BufAt(string.mem, string.idx); switch (get_internal_type(*(int *)ptr)) { case STOREDSTRING_TYPE: { struct NCDVal__string *str_e = ptr; const char *string_data = NCDStringIndex_Value(string_index, string_id); size_t string_length = NCDStringIndex_Length(string_index, string_id); return (string_length == str_e->length) && !memcmp(string_data, str_e->data, string_length); } break; case IDSTRING_TYPE: { struct NCDVal__idstring *ids_e = ptr; ASSERT(ids_e->string_index == string_index) return ids_e->string_id == string_id; } break; case EXTERNALSTRING_TYPE: { struct NCDVal__externalstring *exs_e = ptr; const char *string_data = NCDStringIndex_Value(string_index, string_id); size_t string_length = NCDStringIndex_Length(string_index, string_id); return (string_length == exs_e->length) && !memcmp(string_data, exs_e->data, string_length); } break; case COMPOSEDSTRING_TYPE: { struct NCDVal__composedstring *cms_e = ptr; const char *string_data = NCDStringIndex_Value(string_index, string_id); size_t string_length = NCDStringIndex_Length(string_index, string_id); return (string_length == cms_e->length) && NCDVal_StringRegionEquals(string, 0, string_length, string_data); } break; default: ASSERT(0); return 0; } } int NCDVal_StringMemCmp (NCDValRef string1, NCDValRef string2, size_t start1, size_t start2, size_t length) { ASSERT(NCDVal_IsString(string1)) ASSERT(NCDVal_IsString(string2)) ASSERT(start1 <= NCDVal_StringLength(string1)) ASSERT(start2 <= NCDVal_StringLength(string2)) ASSERT(length <= NCDVal_StringLength(string1) - start1) ASSERT(length <= NCDVal_StringLength(string2) - start2) if (NCDVal_IsContinuousString(string1) && NCDVal_IsContinuousString(string2)) { return memcmp(NCDVal_StringData(string1) + start1, NCDVal_StringData(string2) + start2, length); } b_cstring cstr1 = NCDVal_StringCstring(string1); b_cstring cstr2 = NCDVal_StringCstring(string2); return b_cstring_memcmp(cstr1, cstr2, start1, start2, length); } void NCDVal_StringCopyOut (NCDValRef string, size_t start, size_t length, char *dst) { ASSERT(NCDVal_IsString(string)) ASSERT(start <= NCDVal_StringLength(string)) ASSERT(length <= NCDVal_StringLength(string) - start) if (NCDVal_IsContinuousString(string)) { memcpy(dst, NCDVal_StringData(string) + start, length); return; } b_cstring cstr = NCDVal_StringCstring(string); b_cstring_copy_to_buf(cstr, start, length, dst); } int NCDVal_StringRegionEquals (NCDValRef string, size_t start, size_t length, const char *data) { ASSERT(NCDVal_IsString(string)) ASSERT(start <= NCDVal_StringLength(string)) ASSERT(length <= NCDVal_StringLength(string) - start) if (NCDVal_IsContinuousString(string)) { return !memcmp(NCDVal_StringData(string) + start, data, length); } b_cstring cstr = NCDVal_StringCstring(string); return b_cstring_equals_buffer(cstr, start, length, data); } int NCDVal_IsList (NCDValRef val) { NCDVal__AssertVal(val); return NCDVal_Type(val) == NCDVAL_LIST; } NCDValRef NCDVal_NewList (NCDValMem *mem, size_t maxcount) { NCDVal__AssertMem(mem); if (maxcount > (NCDVAL_MAXIDX - sizeof(struct NCDVal__list)) / sizeof(NCDVal__idx)) { goto fail; } NCDVal__idx size = sizeof(struct NCDVal__list) + maxcount * sizeof(NCDVal__idx); NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__list)); if (idx < 0) { goto fail; } struct NCDVal__list *list_e = NCDValMem__BufAt(mem, idx); list_e->type = make_type(NCDVAL_LIST, 0); list_e->maxcount = maxcount; list_e->count = 0; return NCDVal__Ref(mem, idx); fail: return NCDVal_NewInvalid(); } int NCDVal_ListAppend (NCDValRef list, NCDValRef elem) { ASSERT(NCDVal_IsList(list)) ASSERT(NCDVal_ListCount(list) < NCDVal_ListMaxCount(list)) ASSERT(elem.mem == list.mem) NCDVal__AssertValOnly(list.mem, elem.idx); struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx); int new_type = list_e->type; if (!bump_depth(&new_type, NCDVal__Depth(elem))) { return 0; } if (NCDValMem__NeedRegisterLink(list.mem, elem.idx)) { if (!NCDValMem__RegisterLink(list.mem, elem.idx, list.idx + offsetof(struct NCDVal__list, elem_indices) + list_e->count * sizeof(NCDVal__idx))) { return 0; } list_e = NCDValMem__BufAt(list.mem, list.idx); } list_e->type = new_type; list_e->elem_indices[list_e->count++] = elem.idx; return 1; } size_t NCDVal_ListCount (NCDValRef list) { ASSERT(NCDVal_IsList(list)) struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx); return list_e->count; } size_t NCDVal_ListMaxCount (NCDValRef list) { ASSERT(NCDVal_IsList(list)) struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx); return list_e->maxcount; } NCDValRef NCDVal_ListGet (NCDValRef list, size_t pos) { ASSERT(NCDVal_IsList(list)) ASSERT(pos < NCDVal_ListCount(list)) struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx); ASSERT(pos < list_e->count) NCDVal__AssertValOnly(list.mem, list_e->elem_indices[pos]); return NCDVal__Ref(list.mem, list_e->elem_indices[pos]); } int NCDVal_ListRead (NCDValRef list, int num, ...) { ASSERT(NCDVal_IsList(list)) ASSERT(num >= 0) struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx); if (num != list_e->count) { return 0; } va_list ap; va_start(ap, num); for (int i = 0; i < num; i++) { NCDValRef *dest = va_arg(ap, NCDValRef *); *dest = NCDVal__Ref(list.mem, list_e->elem_indices[i]); } va_end(ap); return 1; } int NCDVal_ListReadHead (NCDValRef list, int num, ...) { ASSERT(NCDVal_IsList(list)) ASSERT(num >= 0) struct NCDVal__list *list_e = NCDValMem__BufAt(list.mem, list.idx); if (num > list_e->count) { return 0; } va_list ap; va_start(ap, num); for (int i = 0; i < num; i++) { NCDValRef *dest = va_arg(ap, NCDValRef *); *dest = NCDVal__Ref(list.mem, list_e->elem_indices[i]); } va_end(ap); return 1; } int NCDVal_IsMap (NCDValRef val) { NCDVal__AssertVal(val); return NCDVal_Type(val) == NCDVAL_MAP; } NCDValRef NCDVal_NewMap (NCDValMem *mem, size_t maxcount) { NCDVal__AssertMem(mem); if (maxcount > (NCDVAL_MAXIDX - sizeof(struct NCDVal__map)) / sizeof(struct NCDVal__mapelem)) { goto fail; } NCDVal__idx size = sizeof(struct NCDVal__map) + maxcount * sizeof(struct NCDVal__mapelem); NCDVal__idx idx = NCDValMem__Alloc(mem, size, __alignof(struct NCDVal__map)); if (idx < 0) { goto fail; } struct NCDVal__map *map_e = NCDValMem__BufAt(mem, idx); map_e->type = make_type(NCDVAL_MAP, 0); map_e->maxcount = maxcount; map_e->count = 0; NCDVal__MapTree_Init(&map_e->tree); return NCDVal__Ref(mem, idx); fail: return NCDVal_NewInvalid(); } int NCDVal_MapInsert (NCDValRef map, NCDValRef key, NCDValRef val, int *out_inserted) { ASSERT(NCDVal_IsMap(map)) ASSERT(NCDVal_MapCount(map) < NCDVal_MapMaxCount(map)) ASSERT(key.mem == map.mem) ASSERT(val.mem == map.mem) NCDVal__AssertValOnly(map.mem, key.idx); NCDVal__AssertValOnly(map.mem, val.idx); struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx); int new_type = map_e->type; if (!bump_depth(&new_type, NCDVal__Depth(key)) || !bump_depth(&new_type, NCDVal__Depth(val))) { goto fail0; } NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, map_e->count); if (NCDValMem__NeedRegisterLink(map.mem, key.idx)) { if (!NCDValMem__RegisterLink(map.mem, key.idx, elemidx + offsetof(struct NCDVal__mapelem, key_idx))) { goto fail0; } map_e = NCDValMem__BufAt(map.mem, map.idx); } if (NCDValMem__NeedRegisterLink(map.mem, val.idx)) { if (!NCDValMem__RegisterLink(map.mem, val.idx, elemidx + offsetof(struct NCDVal__mapelem, val_idx))) { goto fail1; } map_e = NCDValMem__BufAt(map.mem, map.idx); } struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, elemidx); ASSERT(me_e == &map_e->elems[map_e->count]) me_e->key_idx = key.idx; me_e->val_idx = val.idx; int res = NCDVal__MapTree_Insert(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, elemidx), NULL); if (!res) { if (out_inserted) { *out_inserted = 0; } return 1; } map_e->type = new_type; map_e->count++; if (out_inserted) { *out_inserted = 1; } return 1; fail1: if (NCDValMem__NeedRegisterLink(map.mem, key.idx)) { NCDValMem__PopLastRegisteredLink(map.mem); } fail0: return 0; } size_t NCDVal_MapCount (NCDValRef map) { ASSERT(NCDVal_IsMap(map)) struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx); return map_e->count; } size_t NCDVal_MapMaxCount (NCDValRef map) { ASSERT(NCDVal_IsMap(map)) struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx); return map_e->maxcount; } int NCDVal_MapElemInvalid (NCDValMapElem me) { ASSERT(me.elemidx >= 0 || me.elemidx == -1) return me.elemidx < 0; } NCDValMapElem NCDVal_MapFirst (NCDValRef map) { ASSERT(NCDVal_IsMap(map)) struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx); if (map_e->count == 0) { return NCDVal__MapElem(-1); } NCDVal__idx elemidx = NCDVal__MapElemIdx(map.idx, 0); NCDVal__MapAssertElemOnly(map, elemidx); return NCDVal__MapElem(elemidx); } NCDValMapElem NCDVal_MapNext (NCDValRef map, NCDValMapElem me) { NCDVal__MapAssertElem(map, me); struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx); ASSERT(map_e->count > 0) NCDVal__idx last_elemidx = NCDVal__MapElemIdx(map.idx, map_e->count - 1); ASSERT(me.elemidx <= last_elemidx) if (me.elemidx == last_elemidx) { return NCDVal__MapElem(-1); } NCDVal__idx elemidx = me.elemidx + sizeof(struct NCDVal__mapelem); NCDVal__MapAssertElemOnly(map, elemidx); return NCDVal__MapElem(elemidx); } NCDValMapElem NCDVal_MapOrderedFirst (NCDValRef map) { ASSERT(NCDVal_IsMap(map)) struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx); NCDVal__MapTreeRef ref = NCDVal__MapTree_GetFirst(&map_e->tree, map.mem); ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1)) return NCDVal__MapElem(ref.link); } NCDValMapElem NCDVal_MapOrderedNext (NCDValRef map, NCDValMapElem me) { NCDVal__MapAssertElem(map, me); struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx); NCDVal__MapTreeRef ref = NCDVal__MapTree_GetNext(&map_e->tree, map.mem, NCDVal__MapTreeDeref(map.mem, me.elemidx)); ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1)) return NCDVal__MapElem(ref.link); } NCDValRef NCDVal_MapElemKey (NCDValRef map, NCDValMapElem me) { NCDVal__MapAssertElem(map, me); struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx); return NCDVal__Ref(map.mem, me_e->key_idx); } NCDValRef NCDVal_MapElemVal (NCDValRef map, NCDValMapElem me) { NCDVal__MapAssertElem(map, me); struct NCDVal__mapelem *me_e = NCDValMem__BufAt(map.mem, me.elemidx); return NCDVal__Ref(map.mem, me_e->val_idx); } NCDValMapElem NCDVal_MapFindKey (NCDValRef map, NCDValRef key) { ASSERT(NCDVal_IsMap(map)) NCDVal__AssertVal(key); struct NCDVal__map *map_e = NCDValMem__BufAt(map.mem, map.idx); NCDVal__MapTreeRef ref = NCDVal__MapTree_LookupExact(&map_e->tree, map.mem, key); ASSERT(ref.link == -1 || (NCDVal__MapAssertElemOnly(map, ref.link), 1)) return NCDVal__MapElem(ref.link); } NCDValRef NCDVal_MapGetValue (NCDValRef map, const char *key_str) { ASSERT(NCDVal_IsMap(map)) ASSERT(key_str) NCDValMem mem; mem.buf = NULL; mem.size = NCDVAL_FASTBUF_SIZE; mem.used = sizeof(struct NCDVal__externalstring); mem.first_ref = -1; struct NCDVal__externalstring *exs_e = (void *)mem.fastbuf; exs_e->type = make_type(EXTERNALSTRING_TYPE, 0); exs_e->data = key_str; exs_e->length = strlen(key_str); exs_e->ref.target = NULL; NCDValRef key = NCDVal__Ref(&mem, 0); NCDValMapElem elem = NCDVal_MapFindKey(map, key); if (NCDVal_MapElemInvalid(elem)) { return NCDVal_NewInvalid(); } return NCDVal_MapElemVal(map, elem); } static void replaceprog_build_recurser (NCDValMem *mem, NCDVal__idx idx, size_t *out_num_instr, NCDValReplaceProg *prog) { ASSERT(idx >= 0) NCDVal__AssertValOnly(mem, idx); ASSERT(out_num_instr) *out_num_instr = 0; void *ptr = NCDValMem__BufAt(mem, idx); struct NCDVal__instr instr; switch (get_internal_type(*((int *)(ptr)))) { case STOREDSTRING_TYPE: case IDSTRING_TYPE: case EXTERNALSTRING_TYPE: case COMPOSEDSTRING_TYPE: { } break; case NCDVAL_LIST: { struct NCDVal__list *list_e = ptr; for (NCDVal__idx i = 0; i < list_e->count; i++) { int elem_changed = 0; if (list_e->elem_indices[i] < -1) { if (prog) { instr.type = NCDVAL_INSTR_PLACEHOLDER; instr.placeholder.plid = list_e->elem_indices[i] - NCDVAL_MINIDX; instr.placeholder.plidx = idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx); prog->instrs[prog->num_instrs++] = instr; } (*out_num_instr)++; elem_changed = 1; } else { size_t elem_num_instr; replaceprog_build_recurser(mem, list_e->elem_indices[i], &elem_num_instr, prog); (*out_num_instr) += elem_num_instr; if (elem_num_instr > 0) { elem_changed = 1; } } if (elem_changed) { if (prog) { instr.type = NCDVAL_INSTR_BUMPDEPTH; instr.bumpdepth.parent_idx = idx; instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__list, elem_indices) + i * sizeof(NCDVal__idx); prog->instrs[prog->num_instrs++] = instr; } (*out_num_instr)++; } } } break; case NCDVAL_MAP: { struct NCDVal__map *map_e = ptr; for (NCDVal__idx i = 0; i < map_e->count; i++) { int key_changed = 0; int val_changed = 0; if (map_e->elems[i].key_idx < -1) { if (prog) { instr.type = NCDVAL_INSTR_PLACEHOLDER; instr.placeholder.plid = map_e->elems[i].key_idx - NCDVAL_MINIDX; instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, key_idx); prog->instrs[prog->num_instrs++] = instr; } (*out_num_instr)++; key_changed = 1; } else { size_t key_num_instr; replaceprog_build_recurser(mem, map_e->elems[i].key_idx, &key_num_instr, prog); (*out_num_instr) += key_num_instr; if (key_num_instr > 0) { key_changed = 1; } } if (map_e->elems[i].val_idx < -1) { if (prog) { instr.type = NCDVAL_INSTR_PLACEHOLDER; instr.placeholder.plid = map_e->elems[i].val_idx - NCDVAL_MINIDX; instr.placeholder.plidx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, val_idx); prog->instrs[prog->num_instrs++] = instr; } (*out_num_instr)++; val_changed = 1; } else { size_t val_num_instr; replaceprog_build_recurser(mem, map_e->elems[i].val_idx, &val_num_instr, prog); (*out_num_instr) += val_num_instr; if (val_num_instr > 0) { val_changed = 1; } } if (key_changed) { if (prog) { instr.type = NCDVAL_INSTR_REINSERT; instr.reinsert.mapidx = idx; instr.reinsert.elempos = i; prog->instrs[prog->num_instrs++] = instr; } (*out_num_instr)++; if (prog) { instr.type = NCDVAL_INSTR_BUMPDEPTH; instr.bumpdepth.parent_idx = idx; instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, key_idx); prog->instrs[prog->num_instrs++] = instr; } (*out_num_instr)++; } if (val_changed) { if (prog) { instr.type = NCDVAL_INSTR_BUMPDEPTH; instr.bumpdepth.parent_idx = idx; instr.bumpdepth.child_idx_idx = idx + offsetof(struct NCDVal__map, elems) + i * sizeof(struct NCDVal__mapelem) + offsetof(struct NCDVal__mapelem, val_idx); prog->instrs[prog->num_instrs++] = instr; } (*out_num_instr)++; } } } break; default: ASSERT(0); } } int NCDValReplaceProg_Init (NCDValReplaceProg *o, NCDValRef val) { NCDVal__AssertVal(val); ASSERT(!NCDVal_IsPlaceholder(val)) size_t num_instrs; replaceprog_build_recurser(val.mem, val.idx, &num_instrs, NULL); if (!(o->instrs = BAllocArray(num_instrs, sizeof(o->instrs[0])))) { BLog(BLOG_ERROR, "BAllocArray failed"); return 0; } o->num_instrs = 0; size_t num_instrs2; replaceprog_build_recurser(val.mem, val.idx, &num_instrs2, o); ASSERT(num_instrs2 == num_instrs) ASSERT(o->num_instrs == num_instrs) return 1; } void NCDValReplaceProg_Free (NCDValReplaceProg *o) { BFree(o->instrs); } int NCDValReplaceProg_Execute (NCDValReplaceProg prog, NCDValMem *mem, NCDVal_replace_func replace, void *arg) { NCDVal__AssertMem(mem); ASSERT(replace) for (size_t i = 0; i < prog.num_instrs; i++) { struct NCDVal__instr instr = prog.instrs[i]; switch (instr.type) { case NCDVAL_INSTR_PLACEHOLDER: { #ifndef NDEBUG NCDVal__idx *check_plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx); ASSERT(*check_plptr < -1) ASSERT(*check_plptr - NCDVAL_MINIDX == instr.placeholder.plid) #endif NCDValRef repval; if (!replace(arg, instr.placeholder.plid, mem, &repval) || NCDVal_IsInvalid(repval)) { return 0; } ASSERT(repval.mem == mem) if (NCDValMem__NeedRegisterLink(mem, repval.idx)) { NCDValMem__RegisterLink(mem, repval.idx, instr.placeholder.plidx); } NCDVal__idx *plptr = NCDValMem__BufAt(mem, instr.placeholder.plidx); *plptr = repval.idx; } break; case NCDVAL_INSTR_REINSERT: { NCDVal__AssertValOnly(mem, instr.reinsert.mapidx); struct NCDVal__map *map_e = NCDValMem__BufAt(mem, instr.reinsert.mapidx); ASSERT(get_internal_type(map_e->type) == NCDVAL_MAP) ASSERT(instr.reinsert.elempos >= 0) ASSERT(instr.reinsert.elempos < map_e->count) NCDVal__MapTreeRef ref = {&map_e->elems[instr.reinsert.elempos], NCDVal__MapElemIdx(instr.reinsert.mapidx, instr.reinsert.elempos)}; NCDVal__MapTree_Remove(&map_e->tree, mem, ref); if (!NCDVal__MapTree_Insert(&map_e->tree, mem, ref, NULL)) { BLog(BLOG_ERROR, "duplicate key in map"); return 0; } } break; case NCDVAL_INSTR_BUMPDEPTH: { NCDVal__AssertValOnly(mem, instr.bumpdepth.parent_idx); int *parent_type_ptr = NCDValMem__BufAt(mem, instr.bumpdepth.parent_idx); NCDVal__idx *child_type_idx_ptr = NCDValMem__BufAt(mem, instr.bumpdepth.child_idx_idx); NCDVal__AssertValOnly(mem, *child_type_idx_ptr); int *child_type_ptr = NCDValMem__BufAt(mem, *child_type_idx_ptr); if (!bump_depth(parent_type_ptr, get_depth(*child_type_ptr))) { BLog(BLOG_ERROR, "depth limit exceeded"); return 0; } } break; default: ASSERT(0); } } return 1; }