ricochet-go/vendor/google.golang.org/appengine/datastore/query.go

725 lines
21 KiB
Go
Raw Normal View History

// Copyright 2011 Google Inc. All rights reserved.
// Use of this source code is governed by the Apache 2.0
// license that can be found in the LICENSE file.
package datastore
import (
"encoding/base64"
"errors"
"fmt"
"math"
"reflect"
"strings"
"github.com/golang/protobuf/proto"
"golang.org/x/net/context"
"google.golang.org/appengine/internal"
pb "google.golang.org/appengine/internal/datastore"
)
type operator int
const (
lessThan operator = iota
lessEq
equal
greaterEq
greaterThan
)
var operatorToProto = map[operator]*pb.Query_Filter_Operator{
lessThan: pb.Query_Filter_LESS_THAN.Enum(),
lessEq: pb.Query_Filter_LESS_THAN_OR_EQUAL.Enum(),
equal: pb.Query_Filter_EQUAL.Enum(),
greaterEq: pb.Query_Filter_GREATER_THAN_OR_EQUAL.Enum(),
greaterThan: pb.Query_Filter_GREATER_THAN.Enum(),
}
// filter is a conditional filter on query results.
type filter struct {
FieldName string
Op operator
Value interface{}
}
type sortDirection int
const (
ascending sortDirection = iota
descending
)
var sortDirectionToProto = map[sortDirection]*pb.Query_Order_Direction{
ascending: pb.Query_Order_ASCENDING.Enum(),
descending: pb.Query_Order_DESCENDING.Enum(),
}
// order is a sort order on query results.
type order struct {
FieldName string
Direction sortDirection
}
// NewQuery creates a new Query for a specific entity kind.
//
// An empty kind means to return all entities, including entities created and
// managed by other App Engine features, and is called a kindless query.
// Kindless queries cannot include filters or sort orders on property values.
func NewQuery(kind string) *Query {
return &Query{
kind: kind,
limit: -1,
}
}
// Query represents a datastore query.
type Query struct {
kind string
ancestor *Key
filter []filter
order []order
projection []string
distinct bool
keysOnly bool
eventual bool
limit int32
offset int32
start *pb.CompiledCursor
end *pb.CompiledCursor
err error
}
func (q *Query) clone() *Query {
x := *q
// Copy the contents of the slice-typed fields to a new backing store.
if len(q.filter) > 0 {
x.filter = make([]filter, len(q.filter))
copy(x.filter, q.filter)
}
if len(q.order) > 0 {
x.order = make([]order, len(q.order))
copy(x.order, q.order)
}
return &x
}
// Ancestor returns a derivative query with an ancestor filter.
// The ancestor should not be nil.
func (q *Query) Ancestor(ancestor *Key) *Query {
q = q.clone()
if ancestor == nil {
q.err = errors.New("datastore: nil query ancestor")
return q
}
q.ancestor = ancestor
return q
}
// EventualConsistency returns a derivative query that returns eventually
// consistent results.
// It only has an effect on ancestor queries.
func (q *Query) EventualConsistency() *Query {
q = q.clone()
q.eventual = true
return q
}
// Filter returns a derivative query with a field-based filter.
// The filterStr argument must be a field name followed by optional space,
// followed by an operator, one of ">", "<", ">=", "<=", or "=".
// Fields are compared against the provided value using the operator.
// Multiple filters are AND'ed together.
func (q *Query) Filter(filterStr string, value interface{}) *Query {
q = q.clone()
filterStr = strings.TrimSpace(filterStr)
if len(filterStr) < 1 {
q.err = errors.New("datastore: invalid filter: " + filterStr)
return q
}
f := filter{
FieldName: strings.TrimRight(filterStr, " ><=!"),
Value: value,
}
switch op := strings.TrimSpace(filterStr[len(f.FieldName):]); op {
case "<=":
f.Op = lessEq
case ">=":
f.Op = greaterEq
case "<":
f.Op = lessThan
case ">":
f.Op = greaterThan
case "=":
f.Op = equal
default:
q.err = fmt.Errorf("datastore: invalid operator %q in filter %q", op, filterStr)
return q
}
q.filter = append(q.filter, f)
return q
}
// Order returns a derivative query with a field-based sort order. Orders are
// applied in the order they are added. The default order is ascending; to sort
// in descending order prefix the fieldName with a minus sign (-).
func (q *Query) Order(fieldName string) *Query {
q = q.clone()
fieldName = strings.TrimSpace(fieldName)
o := order{
Direction: ascending,
FieldName: fieldName,
}
if strings.HasPrefix(fieldName, "-") {
o.Direction = descending
o.FieldName = strings.TrimSpace(fieldName[1:])
} else if strings.HasPrefix(fieldName, "+") {
q.err = fmt.Errorf("datastore: invalid order: %q", fieldName)
return q
}
if len(o.FieldName) == 0 {
q.err = errors.New("datastore: empty order")
return q
}
q.order = append(q.order, o)
return q
}
// Project returns a derivative query that yields only the given fields. It
// cannot be used with KeysOnly.
func (q *Query) Project(fieldNames ...string) *Query {
q = q.clone()
q.projection = append([]string(nil), fieldNames...)
return q
}
// Distinct returns a derivative query that yields de-duplicated entities with
// respect to the set of projected fields. It is only used for projection
// queries.
func (q *Query) Distinct() *Query {
q = q.clone()
q.distinct = true
return q
}
// KeysOnly returns a derivative query that yields only keys, not keys and
// entities. It cannot be used with projection queries.
func (q *Query) KeysOnly() *Query {
q = q.clone()
q.keysOnly = true
return q
}
// Limit returns a derivative query that has a limit on the number of results
// returned. A negative value means unlimited.
func (q *Query) Limit(limit int) *Query {
q = q.clone()
if limit < math.MinInt32 || limit > math.MaxInt32 {
q.err = errors.New("datastore: query limit overflow")
return q
}
q.limit = int32(limit)
return q
}
// Offset returns a derivative query that has an offset of how many keys to
// skip over before returning results. A negative value is invalid.
func (q *Query) Offset(offset int) *Query {
q = q.clone()
if offset < 0 {
q.err = errors.New("datastore: negative query offset")
return q
}
if offset > math.MaxInt32 {
q.err = errors.New("datastore: query offset overflow")
return q
}
q.offset = int32(offset)
return q
}
// Start returns a derivative query with the given start point.
func (q *Query) Start(c Cursor) *Query {
q = q.clone()
if c.cc == nil {
q.err = errors.New("datastore: invalid cursor")
return q
}
q.start = c.cc
return q
}
// End returns a derivative query with the given end point.
func (q *Query) End(c Cursor) *Query {
q = q.clone()
if c.cc == nil {
q.err = errors.New("datastore: invalid cursor")
return q
}
q.end = c.cc
return q
}
// toProto converts the query to a protocol buffer.
func (q *Query) toProto(dst *pb.Query, appID string) error {
if len(q.projection) != 0 && q.keysOnly {
return errors.New("datastore: query cannot both project and be keys-only")
}
dst.Reset()
dst.App = proto.String(appID)
if q.kind != "" {
dst.Kind = proto.String(q.kind)
}
if q.ancestor != nil {
dst.Ancestor = keyToProto(appID, q.ancestor)
if q.eventual {
dst.Strong = proto.Bool(false)
}
}
if q.projection != nil {
dst.PropertyName = q.projection
if q.distinct {
dst.GroupByPropertyName = q.projection
}
}
if q.keysOnly {
dst.KeysOnly = proto.Bool(true)
dst.RequirePerfectPlan = proto.Bool(true)
}
for _, qf := range q.filter {
if qf.FieldName == "" {
return errors.New("datastore: empty query filter field name")
}
p, errStr := valueToProto(appID, qf.FieldName, reflect.ValueOf(qf.Value), false)
if errStr != "" {
return errors.New("datastore: bad query filter value type: " + errStr)
}
xf := &pb.Query_Filter{
Op: operatorToProto[qf.Op],
Property: []*pb.Property{p},
}
if xf.Op == nil {
return errors.New("datastore: unknown query filter operator")
}
dst.Filter = append(dst.Filter, xf)
}
for _, qo := range q.order {
if qo.FieldName == "" {
return errors.New("datastore: empty query order field name")
}
xo := &pb.Query_Order{
Property: proto.String(qo.FieldName),
Direction: sortDirectionToProto[qo.Direction],
}
if xo.Direction == nil {
return errors.New("datastore: unknown query order direction")
}
dst.Order = append(dst.Order, xo)
}
if q.limit >= 0 {
dst.Limit = proto.Int32(q.limit)
}
if q.offset != 0 {
dst.Offset = proto.Int32(q.offset)
}
dst.CompiledCursor = q.start
dst.EndCompiledCursor = q.end
dst.Compile = proto.Bool(true)
return nil
}
// Count returns the number of results for the query.
//
// The running time and number of API calls made by Count scale linearly with
// the sum of the query's offset and limit. Unless the result count is
// expected to be small, it is best to specify a limit; otherwise Count will
// continue until it finishes counting or the provided context expires.
func (q *Query) Count(c context.Context) (int, error) {
// Check that the query is well-formed.
if q.err != nil {
return 0, q.err
}
// Run a copy of the query, with keysOnly true (if we're not a projection,
// since the two are incompatible), and an adjusted offset. We also set the
// limit to zero, as we don't want any actual entity data, just the number
// of skipped results.
newQ := q.clone()
newQ.keysOnly = len(newQ.projection) == 0
newQ.limit = 0
if q.limit < 0 {
// If the original query was unlimited, set the new query's offset to maximum.
newQ.offset = math.MaxInt32
} else {
newQ.offset = q.offset + q.limit
if newQ.offset < 0 {
// Do the best we can, in the presence of overflow.
newQ.offset = math.MaxInt32
}
}
req := &pb.Query{}
if err := newQ.toProto(req, internal.FullyQualifiedAppID(c)); err != nil {
return 0, err
}
res := &pb.QueryResult{}
if err := internal.Call(c, "datastore_v3", "RunQuery", req, res); err != nil {
return 0, err
}
// n is the count we will return. For example, suppose that our original
// query had an offset of 4 and a limit of 2008: the count will be 2008,
// provided that there are at least 2012 matching entities. However, the
// RPCs will only skip 1000 results at a time. The RPC sequence is:
// call RunQuery with (offset, limit) = (2012, 0) // 2012 == newQ.offset
// response has (skippedResults, moreResults) = (1000, true)
// n += 1000 // n == 1000
// call Next with (offset, limit) = (1012, 0) // 1012 == newQ.offset - n
// response has (skippedResults, moreResults) = (1000, true)
// n += 1000 // n == 2000
// call Next with (offset, limit) = (12, 0) // 12 == newQ.offset - n
// response has (skippedResults, moreResults) = (12, false)
// n += 12 // n == 2012
// // exit the loop
// n -= 4 // n == 2008
var n int32
for {
// The QueryResult should have no actual entity data, just skipped results.
if len(res.Result) != 0 {
return 0, errors.New("datastore: internal error: Count request returned too much data")
}
n += res.GetSkippedResults()
if !res.GetMoreResults() {
break
}
if err := callNext(c, res, newQ.offset-n, 0); err != nil {
return 0, err
}
}
n -= q.offset
if n < 0 {
// If the offset was greater than the number of matching entities,
// return 0 instead of negative.
n = 0
}
return int(n), nil
}
// callNext issues a datastore_v3/Next RPC to advance a cursor, such as that
// returned by a query with more results.
func callNext(c context.Context, res *pb.QueryResult, offset, limit int32) error {
if res.Cursor == nil {
return errors.New("datastore: internal error: server did not return a cursor")
}
req := &pb.NextRequest{
Cursor: res.Cursor,
}
if limit >= 0 {
req.Count = proto.Int32(limit)
}
if offset != 0 {
req.Offset = proto.Int32(offset)
}
if res.CompiledCursor != nil {
req.Compile = proto.Bool(true)
}
res.Reset()
return internal.Call(c, "datastore_v3", "Next", req, res)
}
// GetAll runs the query in the given context and returns all keys that match
// that query, as well as appending the values to dst.
//
// dst must have type *[]S or *[]*S or *[]P, for some struct type S or some non-
// interface, non-pointer type P such that P or *P implements PropertyLoadSaver.
//
// As a special case, *PropertyList is an invalid type for dst, even though a
// PropertyList is a slice of structs. It is treated as invalid to avoid being
// mistakenly passed when *[]PropertyList was intended.
//
// The keys returned by GetAll will be in a 1-1 correspondence with the entities
// added to dst.
//
// If q is a ``keys-only'' query, GetAll ignores dst and only returns the keys.
//
// The running time and number of API calls made by GetAll scale linearly with
// with the sum of the query's offset and limit. Unless the result count is
// expected to be small, it is best to specify a limit; otherwise GetAll will
// continue until it finishes collecting results or the provided context
// expires.
func (q *Query) GetAll(c context.Context, dst interface{}) ([]*Key, error) {
var (
dv reflect.Value
mat multiArgType
elemType reflect.Type
errFieldMismatch error
)
if !q.keysOnly {
dv = reflect.ValueOf(dst)
if dv.Kind() != reflect.Ptr || dv.IsNil() {
return nil, ErrInvalidEntityType
}
dv = dv.Elem()
mat, elemType = checkMultiArg(dv)
if mat == multiArgTypeInvalid || mat == multiArgTypeInterface {
return nil, ErrInvalidEntityType
}
}
var keys []*Key
for t := q.Run(c); ; {
k, e, err := t.next()
if err == Done {
break
}
if err != nil {
return keys, err
}
if !q.keysOnly {
ev := reflect.New(elemType)
if elemType.Kind() == reflect.Map {
// This is a special case. The zero values of a map type are
// not immediately useful; they have to be make'd.
//
// Funcs and channels are similar, in that a zero value is not useful,
// but even a freshly make'd channel isn't useful: there's no fixed
// channel buffer size that is always going to be large enough, and
// there's no goroutine to drain the other end. Theoretically, these
// types could be supported, for example by sniffing for a constructor
// method or requiring prior registration, but for now it's not a
// frequent enough concern to be worth it. Programmers can work around
// it by explicitly using Iterator.Next instead of the Query.GetAll
// convenience method.
x := reflect.MakeMap(elemType)
ev.Elem().Set(x)
}
if err = loadEntity(ev.Interface(), e); err != nil {
if _, ok := err.(*ErrFieldMismatch); ok {
// We continue loading entities even in the face of field mismatch errors.
// If we encounter any other error, that other error is returned. Otherwise,
// an ErrFieldMismatch is returned.
errFieldMismatch = err
} else {
return keys, err
}
}
if mat != multiArgTypeStructPtr {
ev = ev.Elem()
}
dv.Set(reflect.Append(dv, ev))
}
keys = append(keys, k)
}
return keys, errFieldMismatch
}
// Run runs the query in the given context.
func (q *Query) Run(c context.Context) *Iterator {
if q.err != nil {
return &Iterator{err: q.err}
}
t := &Iterator{
c: c,
limit: q.limit,
q: q,
prevCC: q.start,
}
var req pb.Query
if err := q.toProto(&req, internal.FullyQualifiedAppID(c)); err != nil {
t.err = err
return t
}
if err := internal.Call(c, "datastore_v3", "RunQuery", &req, &t.res); err != nil {
t.err = err
return t
}
offset := q.offset - t.res.GetSkippedResults()
for offset > 0 && t.res.GetMoreResults() {
t.prevCC = t.res.CompiledCursor
if err := callNext(t.c, &t.res, offset, t.limit); err != nil {
t.err = err
break
}
skip := t.res.GetSkippedResults()
if skip < 0 {
t.err = errors.New("datastore: internal error: negative number of skipped_results")
break
}
offset -= skip
}
if offset < 0 {
t.err = errors.New("datastore: internal error: query offset was overshot")
}
return t
}
// Iterator is the result of running a query.
type Iterator struct {
c context.Context
err error
// res is the result of the most recent RunQuery or Next API call.
res pb.QueryResult
// i is how many elements of res.Result we have iterated over.
i int
// limit is the limit on the number of results this iterator should return.
// A negative value means unlimited.
limit int32
// q is the original query which yielded this iterator.
q *Query
// prevCC is the compiled cursor that marks the end of the previous batch
// of results.
prevCC *pb.CompiledCursor
}
// Done is returned when a query iteration has completed.
var Done = errors.New("datastore: query has no more results")
// Next returns the key of the next result. When there are no more results,
// Done is returned as the error.
//
// If the query is not keys only and dst is non-nil, it also loads the entity
// stored for that key into the struct pointer or PropertyLoadSaver dst, with
// the same semantics and possible errors as for the Get function.
func (t *Iterator) Next(dst interface{}) (*Key, error) {
k, e, err := t.next()
if err != nil {
return nil, err
}
if dst != nil && !t.q.keysOnly {
err = loadEntity(dst, e)
}
return k, err
}
func (t *Iterator) next() (*Key, *pb.EntityProto, error) {
if t.err != nil {
return nil, nil, t.err
}
// Issue datastore_v3/Next RPCs as necessary.
for t.i == len(t.res.Result) {
if !t.res.GetMoreResults() {
t.err = Done
return nil, nil, t.err
}
t.prevCC = t.res.CompiledCursor
if err := callNext(t.c, &t.res, 0, t.limit); err != nil {
t.err = err
return nil, nil, t.err
}
if t.res.GetSkippedResults() != 0 {
t.err = errors.New("datastore: internal error: iterator has skipped results")
return nil, nil, t.err
}
t.i = 0
if t.limit >= 0 {
t.limit -= int32(len(t.res.Result))
if t.limit < 0 {
t.err = errors.New("datastore: internal error: query returned more results than the limit")
return nil, nil, t.err
}
}
}
// Extract the key from the t.i'th element of t.res.Result.
e := t.res.Result[t.i]
t.i++
if e.Key == nil {
return nil, nil, errors.New("datastore: internal error: server did not return a key")
}
k, err := protoToKey(e.Key)
if err != nil || k.Incomplete() {
return nil, nil, errors.New("datastore: internal error: server returned an invalid key")
}
return k, e, nil
}
// Cursor returns a cursor for the iterator's current location.
func (t *Iterator) Cursor() (Cursor, error) {
if t.err != nil && t.err != Done {
return Cursor{}, t.err
}
// If we are at either end of the current batch of results,
// return the compiled cursor at that end.
skipped := t.res.GetSkippedResults()
if t.i == 0 && skipped == 0 {
if t.prevCC == nil {
// A nil pointer (of type *pb.CompiledCursor) means no constraint:
// passing it as the end cursor of a new query means unlimited results
// (glossing over the integer limit parameter for now).
// A non-nil pointer to an empty pb.CompiledCursor means the start:
// passing it as the end cursor of a new query means 0 results.
// If prevCC was nil, then the original query had no start cursor, but
// Iterator.Cursor should return "the start" instead of unlimited.
return Cursor{&zeroCC}, nil
}
return Cursor{t.prevCC}, nil
}
if t.i == len(t.res.Result) {
return Cursor{t.res.CompiledCursor}, nil
}
// Otherwise, re-run the query offset to this iterator's position, starting from
// the most recent compiled cursor. This is done on a best-effort basis, as it
// is racy; if a concurrent process has added or removed entities, then the
// cursor returned may be inconsistent.
q := t.q.clone()
q.start = t.prevCC
q.offset = skipped + int32(t.i)
q.limit = 0
q.keysOnly = len(q.projection) == 0
t1 := q.Run(t.c)
_, _, err := t1.next()
if err != Done {
if err == nil {
err = fmt.Errorf("datastore: internal error: zero-limit query did not have zero results")
}
return Cursor{}, err
}
return Cursor{t1.res.CompiledCursor}, nil
}
var zeroCC pb.CompiledCursor
// Cursor is an iterator's position. It can be converted to and from an opaque
// string. A cursor can be used from different HTTP requests, but only with a
// query with the same kind, ancestor, filter and order constraints.
type Cursor struct {
cc *pb.CompiledCursor
}
// String returns a base-64 string representation of a cursor.
func (c Cursor) String() string {
if c.cc == nil {
return ""
}
b, err := proto.Marshal(c.cc)
if err != nil {
// The only way to construct a Cursor with a non-nil cc field is to
// unmarshal from the byte representation. We panic if the unmarshal
// succeeds but the marshaling of the unchanged protobuf value fails.
panic(fmt.Sprintf("datastore: internal error: malformed cursor: %v", err))
}
return strings.TrimRight(base64.URLEncoding.EncodeToString(b), "=")
}
// Decode decodes a cursor from its base-64 string representation.
func DecodeCursor(s string) (Cursor, error) {
if s == "" {
return Cursor{&zeroCC}, nil
}
if n := len(s) % 4; n != 0 {
s += strings.Repeat("=", 4-n)
}
b, err := base64.URLEncoding.DecodeString(s)
if err != nil {
return Cursor{}, err
}
cc := &pb.CompiledCursor{}
if err := proto.Unmarshal(b, cc); err != nil {
return Cursor{}, err
}
return Cursor{cc}, nil
}